Calculate the Go, NoGo and Gray Probabilities for a Clinical Trial When Outcome is Binary Under the Bayesian Framework Using Two Metrics
Source:R/BayesDecisionProbBinary.R
BayesDecisionProbBinary.Rd
This function calculates Go, NoGo, and Gray probabilities for binary outcome clinical trials under the Bayesian framework using two metrics: (i) posterior probability for the treatment effect to be greater than a threshold, and (ii) posterior predictive probability of phase III study success. The function supports controlled, uncontrolled, and external control designs.
Usage
BayesDecisionProbBinary(
prob = "posterior",
design = "controlled",
theta.TV,
theta.MAV,
theta.NULL = NULL,
gamma1,
gamma2,
pi1,
pi2,
n1,
n2,
a1,
a2,
b1,
b2,
z = NULL,
m1,
m2,
ne1,
ne2,
ye1,
ye2,
ae1,
ae2
)
Arguments
- prob
A character string specifying the type of probability to use (
prob = 'posterior'
orprob = 'predictive'
).- design
A character string specifying the type of design (
design = 'controlled'
,design = 'uncontrolled'
, ordesign = 'external'
).- theta.TV
A numeric value representing the pre-specified threshold value for calculating Go probability when
prob = 'posterior'
.- theta.MAV
A numeric value representing the pre-specified threshold value for calculating NoGo probability when
prob = 'posterior'
.- theta.NULL
A numeric value representing the pre-specified threshold value for calculating Go/NoGo probabilities when
prob = 'predictive'
.- gamma1
A numeric value between 0 and 1 representing the minimum probability to declare success.
- gamma2
A numeric value between 0 and 1 representing the futility threshold.
- pi1
A numeric value or vector representing true response probability(s) for group 1.
- pi2
A numeric value or vector representing true response probability(s) for group 2.
- n1
A positive integer representing the number of patients in group 1 for a proof-of-concept (PoC) trial.
- n2
A positive integer representing the number of patients in group 2 for the PoC trial.
- a1
A positive numeric value representing the first shape parameter of the prior distribution for group 1.
- a2
A positive numeric value representing the first shape parameter of the prior distribution for group 2.
- b1
A positive numeric value representing the second shape parameter of the prior distribution for group 1.
- b2
A positive numeric value representing the second shape parameter of the prior distribution for group 2.
- z
A non-negative integer representing the hypothetical observed number of responders in group 2 for an uncontrolled design.
- m1
A positive integer representing the number of patients in group 1 for the future trial data.
- m2
A positive integer representing the number of patients in group 2 for the future trial data.
- ne1
A positive integer representing the number of patients in group 1 for the external data.
- ne2
A positive integer representing the number of patients in group 2 for the external data.
- ye1
A non-negative integer representing the observed number of responders in group 1 for the external data.
- ye2
A non-negative integer representing the observed number of responders in group 2 for the external data.
- ae1
A positive numeric value representing the scale parameter (power parameter) for group 1.
- ae2
A positive numeric value representing the scale parameter (power parameter) for group 2.
Value
A data frame containing the true response probabilities for both groups, and the Go, NoGo, and Gray probabilities.
Details
The function can obtain:
Go probability
NoGo probability
Gray probability
The function can be used for controlled design, uncontrolled design, and design using external (historical) data. The decision framework is based on:
Go: Probability that the treatment effect exceeds the efficacy threshold
NoGo: Probability that the treatment effect is below the futility threshold
Gray: Intermediate zone where neither Go nor NoGo criteria are met
Examples
# Calculate Go/NoGo/Gray probabilities using posterior probability for controlled design
BayesDecisionProbBinary(
prob = 'posterior', design = 'controlled', theta.TV = 0.4, theta.MAV = 0.2, theta.NULL = NULL,
gamma1 = 0.5, gamma2 = 0.2, pi1 = c(0.2, 0.4, 0.6, 0.8), pi2 = rep(0.2, 4), n1 = 12, n2 = 12,
a1 = 0.5, a2 = 0.5, b1 = 0.5, b2 = 0.5, z = NULL, m1 = NULL, m2 = NULL, ne1 = NULL, ne2 = NULL,
ye1 = NULL, ye2 = NULL, ae1 = NULL, ae2 = NULL
)
#> pi1 pi2 Go Gray NoGo
#> 1 0.2 0.2 0.002318252 0.3230196 0.6746621672
#> 2 0.4 0.2 0.075866100 0.7183683 0.2057655626
#> 3 0.6 0.2 0.384587482 0.5868683 0.0285441901
#> 4 0.8 0.2 0.811071055 0.1879492 0.0009797803
# Calculate Go/NoGo/Gray probabilities using posterior predictive probability for controlled design
BayesDecisionProbBinary(
prob = 'predictive', design = 'controlled', theta.TV = NULL, theta.MAV = NULL, theta.NULL = 0,
gamma1 = 0.9, gamma2 = 0.3, pi1 = c(0.2, 0.4, 0.6, 0.8), pi2 = rep(0.2, 4), n1 = 12, n2 = 12,
a1 = 0.5, a2 = 0.5, b1 = 0.5, b2 = 0.5, z = NULL, m1 = 30, m2 = 30, ne1 = NULL, ne2 = NULL,
ye1 = NULL, ye2 = NULL, ae1 = NULL, ae2 = NULL
)
#> pi1 pi2 Go Gray NoGo
#> 1 0.2 0.2 0.05181157 0.65653374 2.916547e-01
#> 2 0.4 0.2 0.31955679 0.63725065 4.319256e-02
#> 3 0.6 0.2 0.73018709 0.26683521 2.977694e-03
#> 4 0.8 0.2 0.96383294 0.03612578 4.128022e-05